Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels.

نویسندگان

  • Jianguo Tan
  • Zhiqi Liu
  • Yoshiko Nomura
  • Alan L Goldin
  • Ke Dong
چکیده

Alternative splicing is a major mechanism by which potassium and calcium channels increase functional diversity in animals. Extensive alternative splicing of the para sodium channel gene and developmental regulation of alternative splicing have been reported in Drosophila species. Alternative splicing has also been observed for several mammalian voltage-gated sodium channel genes. However, the functional significance of alternative splicing of sodium channels has not been demonstrated. In this study, we identified three mutually exclusive alternative exons encoding part of segments 3 and 4 of domain III in the German cockroach sodium channel gene, para(CSMA). The splice site is conserved in the mouse, fish, and human Na(v)1.6 sodium channel genes, suggesting an ancient origin. One of the alternative exons possesses a stop codon, which would generate a truncated protein with only the first two domains. The splicing variant containing the stop codon is detected only in the PNS, whereas the other two full-size variants were detected in both the PNS and CNS. When expressed in Xenopus oocytes, the two splicing variants produced robust sodium currents, but with different gating properties, whereas the splicing variant with the stop codon did not produce any detectable sodium current. Furthermore, these two functional splicing variants exhibited a striking difference in sensitivity to a pyrethroid insecticide, deltamethrin. Exon swapping partially reversed the channel sensitivity to deltamethrin. Our results therefore provide the first evidence that alternative splicing of a sodium channel gene produces pharmacologically distinct channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Splice Variants of NaV1.7 Sodium Channels Have Distinct β Subunit-Dependent Biophysical Properties

Genes encoding the α subunits of neuronal sodium channels have evolutionarily conserved sites of alternative splicing but no functional differences have been attributed to the splice variants. Here, using Na(V)1.7 as an exemplar, we show that the sodium channel isoforms are functionally distinct when co-expressed with β subunits. The gene, SCN9A, encodes the α subunit of the Na(V)1.7 channel, a...

متن کامل

Differential Effects of TipE and a TipE-Homologous Protein on Modulation of Gating Properties of Sodium Channels from Drosophila melanogaster

β subunits of mammalian sodium channels play important roles in modulating the expression and gating of mammalian sodium channels. However, there are no orthologs of β subunits in insects. Instead, an unrelated protein, TipE in Drosophila melanogaster and its orthologs in other insects, is thought to be a sodium channel auxiliary subunit. In addition, there are four TipE-homologous genes (TEH1-...

متن کامل

Conservation of alternative splicing in sodium channels reveals evolutionary focus on release from inactivation and structural insights into gating

KEY POINTS Sodium channels are critical for supporting fast action potentials in neurons; even mutations which cause small changes in sodium channel activity can have devastating consequences for the function of the nervous system. Alternative splicing also changes the activity of sodium channels, and while it is highly conserved, it is not known whether the functional role of this splicing is ...

متن کامل

Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels

How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different stru...

متن کامل

Sodium current density correlates with expression of specific alternatively spliced sodium channel mRNAs in single neurons.

Elements within the first cytoplasmic loop of voltage-gated sodium channels have been implicated in regulating channel function. We have examined the role of alternative splicing within the first cytoplasmic loop of the Drosophila sodium channel gene para in regulating sodium current expression, using single-cell RT-PCR. In addition to a previously described exon (a), we identified a second exo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 13  شماره 

صفحات  -

تاریخ انتشار 2002